Cellular targets for the beneficial actions of tea polyphenols
Author: Mario Lorenz
Green and black teas contain different biologically active polyphenolic compounds that might offer protection against a variety of human diseases. Although promising experimental and clinical data have shown protective effects, limited information is available on how these beneficial effects of tea polyphenols are mediated at the cellular level. Evidence is accumulating that catechins in green tea as well as theaflavins and thearubigins from black tea are the substances responsible for the physiologic effects of tea in vitro. The green tea catechin epigallocatechin-3-gallate (EGCG) is generally considered to be the biologically most active compound in vitro. The changes in the activities of various protein kinases, growth factors, and transcription factors represent a common mechanism involved in cellular effects of tea polyphenols. In addition to modification of intracellular signaling by activation of cellular receptors, it was shown that, at least for EGCG, tea polyphenols can enter the cells and directly interact with their molecular targets within cells. There, they frequently result in opposite effects in primary compared with tumor cells. Although tea polyphenols were long regarded as antioxidants, research in recent years has uncovered their prooxidant properties. The use of high nonphysiologic concentrations in many cell culture studies raises questions about the biological relevance of the observed effects for the in vivo situation. Efforts to attribute functional effects in vivo to specific molecular targets at the cellular level are still ongoing.