Fraud Blocker

Research Database

The only comprehensive database for clinical and medical research papers on the healthy benefits of matcha/green tea.

Search research compiled by Breakaway Matcha

The only comprehensive database for clinical and medical research papers on the healthy benefits of matcha/green tea.

Explore Research Topic

Cognitive Function

Cognitive Function

Matcha consumption leads to much higher intake of green tea phytochemicals compared to regular green tea. Previous research on caffeine, L-theanine, and epigallocatechin gallate (EGCG) repeatedly demonstrated benefits on cognitive performance.

Learn More
Heart Health

Heart Health

According to Harvard Medical School, “lowering your risk of cardiovascular disease may be as easy as drinking green tea. Studies suggest this light, aromatic tea may lower LDL cholesterol and triglycerides, which may be responsible for the tea's association with reduced risk of death from heart disease and stroke.”

Learn More
Mental Health

Mental Health

Matcha contains an amino acid called L-theanine, which has been shown to reduce physiological and psychological stresses. L-theanine also improves cognition and mood in a synergistic manner with caffeine, and promotes alpha wave production in the brain

Learn More
Cancer Prevention

Cancer Prevention

Matcha/green tea has for many centuries been regarded as an essential part of good health in Japan and China. Many believe it can help reduce the risk of cancer, and a growing body of evidence backs this up.

Learn More
Immunity

Immunity

A recent study in the journal Proceedings of the National Academy of Sciences concluded that drinking matcha daily greatly enhanced the overall response of the immune system. The exceedingly high levels of antioxidants in matcha mainly take the form of polyphenols, catechins, and flavonoids, each of which aids the body’s defense in its daily struggles against free radicals that come from the pollution in your air, water and foods.

Learn More

Most Recent Research Articles

Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases

Author: Orly Weinreb and Silvia Mandel and Tamar Amit and Moussa B.H. Youdim

Tea consumption is varying its status from a mere ancient beverage and a lifestyle habit, to a nutrient endowed with possible prospective neurobiological–pharmacological actions beneficial to human health. Accumulating evidence suggest that oxidative stress resulting in reactive oxygen species generation and inflammation play a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers, transition metal (e.g., iron and copper) chelators, and nonvitamin natural antioxidant polyphenols in the clinic. These observations are in line with the current view that polyphenolic dietary supplementation may have an impact on cognitive deficits in individuals of advanced age. As a consequence, green tea polyphenols are now being considered as therapeutic agents in well controlled epidemiological studies, aimed to alter brain aging processes and to serve as possible neuroprotective agents in progressive neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. In particular, literature on the putative novel neuroprotective mechanism of the major green tea polyphenol, (−)-epigallocatechin-3-gallate, are examined and discussed in this review.

 

 

Get the whole article here

Trapping of growth factors by catechins: a possible therapeutical target for prevention of proliferative diseases

Author: Michael Xavier Doss and Shiva Prasad Potta and Jürgen Hescheler and Agapios Sachinidis

The prevention of cancer through dietary intervention is currently receiving considerable attention. Several epidemiological studies substantiate that green tea has a protective effect against a variety of malignant proliferative disorders such as lung cancer, breast cancer and prostate cancer. This preventive potential of green tea against cancer is attributed to the biologically active flavonoids called catechins. Epigallocatechin 3-o-gallate, the major catechin found in green tea, mediates diverse physiological and pharmacological actions in bringing about the regression of the tumors and also lowers the risk of nonmalignant cardiovascular proliferative diseases. Much of the current research is being focused on how these catechins specifically bring about the regression of the experimentally induced tumors both in vitro and in vivo. These catechins exert diverse physiological effects against proliferative diseases by several mechanisms, most of which are not completely characterized. This review summarizes the mechanisms by which these catechins play an essential role in regulating the process of carcinogenesis, with a special emphasis on how these catechins antagonize the growth factor-induced proliferative disorders.

 

 

Get the whole article here

Green tea and the skin

Author: Stephen Hsu

Plant extracts have been widely used as topical applications for wound-healing, anti-aging, and disease treatments. Examples of these include ginkgo biloba, echinacea, ginseng, grape seed, green tea, lemon, lavender, rosemary, thuja, sarsaparilla, soy, prickly pear, sagebrush, jojoba, aloe vera, allantoin, feverwort, bloodroot, apache plume, and papaya. These plants share a common character: they all produce flavonoid compounds with phenolic structures. These phytochemicals are highly reactive with other compounds, such as reactive oxygen species and biologic macromolecules, to neutralize free radicals or initiate biological effects. A short list of phenolic phytochemicals with promising properties to benefit human health includes a group of polyphenol compounds, called catechins, found in green tea. This article summarizes the findings of studies using green tea polyphenols as chemopreventive, natural healing, and anti-aging agents for human skin, and discusses possible mechanisms of action.

 

 

Get the whole article here

Prediction of total green tea antioxidant capacity from chromatograms by multivariate modeling

Author: A.M. van Nederkassel and M. Daszykowski and D.L. Massart and Y. Vander Heyden

In this paper, a fast strategy for determining the total antioxidant capacity of Chinese green tea extracts is developed. This strategy includes the use of experimental techniques, such as fast high-performance liquid chromatography (HPLC) on monolithic columns and a spectrophotometric approach to determine the total antioxidant capacity of the extracts. To extract the chemically relevant information from the obtained data, chemometrical approaches are used. Among them there are correlation optimized warping (COW) to align the chromatograms, robust principal component analysis (robust PCA) to detect outliers, and partial least squares (PLS) and uninformative variable elimination partial least squares (UVE-PLS) to construct a reliable multivariate regression model to predict the total antioxidant capacity from the fast chromatograms.

 

 

Get the whole article here

Green tea modulation of inducible nitric oxide synthase in hypoxic/reoxygenated cardiomyocytes

Author: G. Agnetti and A. Bordoni and C. Angeloni and E. Leoncini and C. Guarnieri and C.M. Caldarera and P.L. Biagi and S. Hrelia

Hypoxia/reoxygenation (H/R) is one of the causes of the increased expression of inducible nitric oxide synthase (iNOS) in cardiomyocytes. Since an aberrant NOS induction has detrimental consequences, we evaluated the effect of a green tea extract (GTE) on the NOS induction and activity in H/R-cardiomyocytes to define a nutritional strategy. Cultured rat cardiomyocytes were exposed to H/R in the presence of two concentrations of a green tea extract (GTE), which is reported to inhibit NOS expression and activity in different cells. In cultured cardiomyocytes two NOS isoforms were constitutively expressed, but only iNOS was induced by H/R. GTE supplementation at the lowest concentration, comparable to that in human plasma after dietary consumption, was ineffective, while the highest, comparable to that achievable by dietary supplements, counteracted the effect of H/R on iNOS induction and activity. It is necessary to verify in humans the relationship between the modulation of NO production and green tea dietary consumption.

 

 

Get the whole article here

Long-term effects of green tea ingestion on atherosclerotic biological markers in smokers

Author: Woochang Lee and Won-Ki Min and Sail Chun and Yong-Wha Lee and Hyosoon Park and Do Hoon Lee and You Kyoung Lee and Ji Eun Son

Objectives: Smoking is a risk factor for coronary artery disease and triggers vascular injury by platelet aggregation and induces atherosclerosis through induction of oxidative stress. Green tea is known to have antioxidant capacity and anti-platelet activity. Design and methods: Twenty adult male smokers ingested 600 mL of green tea for 4 weeks. Their lipid profile, C-reactive protein (CRP), total antioxidant capacity, oxidized LDL, soluble VCAM-1, soluble ICAM-1, and soluble P-selectin were measured at baseline and 2 and 4 weeks after green tea ingestion. Results: Plasma soluble P-selectin (sP-selectin) levels decreased significantly after 2 and 4 weeks of green tea ingestion compared with those before green tea ingestion (P < 0.001). Plasma concentrations of oxidized LDL decreased significantly after green tea ingestion (P < 0.05). Conclusions:The results of this study suggest the effect of green tea on sP-selectin and oxidized LDL.

 

Get the whole article here

Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles

 

Author: Bo Zhou and Long-Min Wu and Li Yang and Zhong-Li Liu

The synergistic antioxidant mechanism of α-tocopherol (vitamin E) with green tea polyphenols, i.e., (−)-epicatechin (EC), (−)-epigallocatechin (EGC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin gallate (EGCG), and gallic acid (GA), was studied by assaying the kinetics of the reaction of α-tocopheroxyl radical with green tea polyphenols by stopped-flow electron paramagnetic resonance, the inhibition of linoleic acid peroxidation by these antioxidants, and the decay of α-tocopherol during the peroxidation. It was found that the green tea polyphenols could reduce α-tocopheroxyl radical to regenerate α-tocopherol with rate constants of 0.45, 1.11, 1.31, 1.91, and 0.43 × 102 M−1 s−1 for EC, EGC, ECG, EGCG, and GA, respectively, in sodium dodecyl sulfate micelles. In addition, these second-order rate constants exhibited a good linear correlation with their oxidation potentials, suggesting that electron transfer might play a role in the reaction.

 

 

Get the whole article here

Effects of green tea on serum paraoxonase/arylesterase activities in streptozotocin-induced diabetic rats

Author: Sibel Tas and Emre Sarandol and Sedef Ziyanok and Kemal Aslan and Melahat Dirican

In recent years, green tea has become a subject of interest because of its beneficial effects on human health. The purpose of this study was to determine the effects of green tea on serum paraoxonase/arylesterase activities and lipoprotein oxidizability in streptozotocin-induced diabetic rats (65 mg/kg [intraperitoneal]). Green tea was given in tap water (2%) for 3 and 6 weeks to control (CGT-3w and CGT-6w) and diabetic (DGT-3w and DGT-6w) rats, and they were compared with the control and diabetic groups (D-3w and D-6w), respectively. Serum insulin level was significantly increased in the DGT-6w group; serum lipid and plasma and tissue malondialdehyde levels were reduced in the DGT-3w and DGT-6w groups. Oxidizability of apolipoprotein B–containing lipoprotein fraction was found to be significantly reduced in the DGT-6w group. Serum total antioxidant capacity showed a significant increase in the CGT-6w and DGT-6w groups. Paraoxonase activity was significantly reduced in the D-3w and D-6w groups and increased in the DGT-6w group. We conclude that green tea might have antihyperlipidemic and antioxidative effects and may slow the progression of atherogenesis by reducing oxidation of lipoproteins and preserving paraoxonase activity.

 

 

Get the whole article here

Protective effects of green tea polyphenol extracts against ethanol-induced gastric mucosal damages in rats: Stress-responsive transcription factors and MAP kinases as potential targets

Author: Jeong-Sang Lee and Tae-Young Oh and Young-Kyung Kim and Joo-Hyun Baik and Sung So and Ki-Baik Hahm and Young-Joon Surh

There are multiple lines of compelling evidence from epidemiologic and laboratory studies supporting that frequent consumption of green tea is inversely associated with the risk of chronic human diseases including cancer. The chemopreventive and chemoprotective effects of green tea have been largely attributed to antioxidative and anti-inflammatory activities of its polyphenolic constituents, such as epigallocatechin gallate. The present study was designed to evaluate the efficacy of green tea polyphenols in protecting against alcohol-induced gastric damage and to elucidate the underlying mechanisms. Intragastric administration of ethanol to male Sprague–Dawley rats caused significant gastric mucosal damage, which was accompanied by elevated expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as transient activation of redox-sensitive transcription factors, such as NF-κB and AP-1, and mitogen-activated protein kinases (MAPKs). Oral administration of the green tea polyphenolic extract (GTE) significantly ameliorated mucosal damages induced by ethanol and also attenuated the ethanol-induced expression of COX-2 and iNOS. Inactivation of MAPKs, especially p38 and ERKl/2, by GTE might be responsible for inhibition of ethanol-induced expression of COX-2 and iNOS.

 

Get the whole article here

Green tea and its isolated constituents in cancer prevention

Author: Andrea Sapone and Donatella Canistro and Massimiliano Broccoli and Laura Pozzetti and Alessandra Affatato and Stefano Vangelisti and Gian Luigi Biagi and Valeriana Sblendorio and Moreno Paolini

 

Get the whole article here

Shipping Icon Free shipping on subscriptions + orders over $49 (US only)

{property.value} {property.value} {property.value} Include jar: {property.value}

Delivery every {property.value}

{property.value}

+
You definitely need tools!
Perfect coldbrew everytime
The ideal way to store your matcha
The ideal way to store your matcha