cancer-prevention
Recent Research Papers on
cancer-prevention
Author: Rachel Johnson and Susan Bryant and Alyson L. Huntley
Background Tea leaves contain varying amounts of polyphenols of which the majority are catechins. There has been a sizable amount of research on the potential effect of green tea catechins for cancer risk, cardiovascular disease risk and weight loss; all conditions that are relevant to mid-life health. The aim was to produce an overview of the evidence for green tea for these three important health conditions. Methods The databases Medline (& Medline in process) and Embase, were searched for systematic reviews and meta-analyses using customised search strategies performed up until April 2012. Assessment of Multiple Systematic Reviews criteria were used to assess the quality of the included reviews. Relevant data were extracted into predefined tables. The results are described and discussed narratively. Results We included eight systematic reviews and meta-analyses covering the topics of cancer risk (n = 2), cardiovascular risk (n = 4) and weight loss (n = 2). Conclusions The evidence for green tea and cancer risk is inadequate and inconclusive. However there is some positive evidence for risk reduction of breast, prostate, ovarian and endometrial cancers with green tea. RCTs of green tea and cardiovascular risk factors suggest that green tea may reduce low-density lipoproteins and total cholesterol, although studies are of short duration. There is no robust evidence to support a reduction in coronary artery disease risk in green tea drinkers. There are a considerable number of RCTs to suggest that green tea does reduce body weight in the short term, but this not likely to be of clinical relevance.
Author: Baruch Narotzki and Abraham Z. Reznick and Dror Aizenbud and Yishai Levy
Green tea is a leading beverage in the Far East for thousands of years; it is regarded for a long time as a health product. Green tea is important source of polyphenol antioxidants. Polyphenols including epigallocatechin 3 gallate (EGCG) constitute the most interesting components in green tea leaves. Green tea has the potential to protect against various malignant, cardiovascular and metabolic diseases. There is a growing body of evidence pointing a beneficial role of green tea and its polyphenols in oral health. Green tea protects against bacterial induced dental caries. Tea polyphenols possess antiviral properties, believed to help in protection from influenza virus. Additionally, green tea polyphenols can abolish halitosis through modification of odorant sulphur components. Oral cavity oxidative stress and inflammation, consequent to cigarette smoking and cigarettes’ deleterious compounds nicotine and acrolein, may be reduced in the presence of green tea polyphenols. Generally, green tea defends healthy cells from malignant transformation and locally has the ability to induce apoptosis in oral cancer cells. All together, there is an increasing interest in the health benefits of green tea in the field of oral health. Nonetheless, there is still a need for more clinical and biological studies to support guidelines for green tea intake as part of prevention and treatment of specific oral pathologies.
Author: Markus Brückner and Sabine Westphal and Wolfram Domschke and Torsten Kucharzik and Andreas Lügering
Background and aims: Leukocyte infiltration, up-regulation of proinflammatory cytokines and severe oxidative stress caused by increased amounts of reactive oxygen species are characteristics of inflammatory bowel disease. The catechin (2R,3R)-2-(3,4,5-Trihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol-3-(3,4,5-trihydroxybenzoate), named epigallocatechin-3-gallate, EGCG, has been demonstrated to exert anti-inflammatory and antioxidative properties, reducing reactive oxygen species in the inflamed tissues. The aim of this study was to evaluate the therapeutic effects of EGCG in a murine model of colitis induced by oral administration of dextran sodium sulfate. Methods: Mice received a daily oral administration of 6.9 mg/kg body weight EGCG or Piper nigrum (L.) alkaloid (2E,4E)-5-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylpenta-2,4-dien-1-one, named piperine (2.9 mg/kg body weight) or the combination of the both — piperine was used in this combination to enhance the bioavailability of EGCG. Results:In vivo data revealed the combination of EGCG and piperine to significantly reduce the loss of body weight, improve the clinical course and increase overall survival in comparison to untreated groups. The attenuated colitis was associated with less histological damages to the colon and reduction of tissue concentrations of malondialdehyde, the final product of lipid peroxidation. Neutrophils accumulation indicator myeloperoxidase was found to be reduced in colon tissue, while antioxidant enzymes like superoxide dismutase and glutathione peroxidase showed an increased activity. In vitro, the treatment with EGCG plus piperine enhanced the expression of SOD as well as GPO and also reduced the production of proinflammatory cytokines. Conclusion: These data support the concept of anti-inflammatory properties of EGCG being generally beneficial in the DSS-model of colitis, an effect that may be mediated by its strong antioxidative potential.
Author: Xinshan Lu and Yan Zhao and Yanfei Sun and Su Yang and Xingbin Yang
This study was to examine the hepatoprotective effects of polysaccharides from green tea of Huangshan Maofeng (HMTP) against CCl4-induced oxidative damage in mice. HMTP is an acidic heteropolysaccharide with galactose (35.0%, mol.%), arabinose (28.9%) and galacturonic acid (11.3%) being the main monosaccharide components. HMTP (400 and 800 mg/kg·bw) administered orally daily for 14 days before CCl4 administration significantly reduced the impact of CCl4 toxicity on the serum markers of liver damage, alanine aminotransferase, aspartate aminotransferase, total-cholesterol and triglycerides. This method of HMTP administration also markedly restrained hepatic lipid peroxidation formation of malondialdehyde and 15-F2t isoprostanes, and elevated the antioxidant levels of hepatic glutathione and superoxide dismutase. These results together with liver histopathology indicated that HMTP exhibited hepatoprotection against CCl4-induced injury, which was found to be comparable to that of biphenyldicarboxylate. The hepatoprotective effects of HMTP may be due to both the inhibition of lipid peroxidation and the increase of antioxidant activity.
Author: Martina Bancirova
The combination of light, photosensitizer and molecular oxygen is involved in the photodynamic effect. The life-time of ROS is extremely short and ROS can damage biological systems. The reactive oxygen species (ROS) are also produced upon excitation of the photosensitizer by visible light only. Some drinks and foods have the potential or definite antioxidant capacity to inhibit or terminate the ROS action. Usually, Paramecium caudatum is used to determine the toxic effect; well known is especially the toxicity determination of the photodynamic effect. The aim of this work was to explore if the protective effect of tea against ROS produced by the different types of photosensitizer (methylene blue, eosin, fluorescein, phthalocyanines) upon the excitation by visible light only is also possible to determine on the unicellular organism P. caudatum, and compare the protective effect of the black and green teas against ROS with the protective effect of ascorbic acid and Trolox (a standard for the total antioxidant capacity determination). The teas were able to prolong the P. caudatum life-time; the highest observed protection against the photodynamic ROS production (triggered by methylene blue) was caused by the black and green teas and was identical for both of them. The stronger protective antioxidant properties of the green tea were not observed. The pro-oxidant influence of the used antioxidants was not observed.
Author: Melina Bucco Soares and Aryele Pinto Izaguirry and Laura Musacchio Vargas and Andreas Sebastian Loureiro Mendez and Cristiano Chiapinotto Spiazzi and Francielli Weber Santos
Cadmium has been associated with a wide spectrum of deleterious effects on the reproductive tissues, including ovary. This investigation evaluated the protective role of Camellia sinensis (green, white and red teas) in the cadmium-induced inhibition of ovarian δ-aminolevulinate dehydratase (δ-ALA-D) activity in vitro and ex vivo. This study demonstrated that green and white teas restored the cow ovary δ-ALA-D activity inhibited by cadmium whereas red tea had no effect in vitro. In addition, green tea was able to restore enzyme activity inhibited after acute cadmium exposure in mice ovary. Teas infusions composition was assessed by HPLC in a quantitative assay for catechins, purine alkaloids and gallic acid as well as total polyphenol content. The greatest effect of green tea observed in vitro as well as the protective role presented in the ex vivo study could be attributed to the major content of phenols, but not catechins. In fact, catechins were not able to restore enzyme activity inhibited by cadmium, demonstrating that these compounds are not major components responsible for the beneficial effect of green tea observed in this study. This study demonstrated the helpful effect of green tea infusion in ameliorating a marker protein of cadmium intoxication in ovarian tissue.
Author: Aditi Jain and Chanchal Manghani and Shrey Kohli and Darshika Nigam and Vibha Rani
Tea is one of the most popularly consumed beverage. Depending on the manufacturing process, different varieties of tea can be produced. The antioxidative and antimutagenic potential of tea in cardiovascular diseases, cancer and obesity have long been studied. These therapeutic and nutritional benefits of tea can be attributed to the presence of flavanoids. However, these flavanoids also have certain detrimental effects on human health when their consumption exceeds certain limits. The toxicity of these flavanoids can be attributed to the formation of reactive oxygen species in the body which causes damage to the DNA, lipid membranes etc. The aim of this review is to summarize briefly, the less studied evidences of various forms of toxicity associated with tea and its harmful effects on human health.
Author: Jungmin Oh and Heonjoo Jo and Ah Reum Cho and Sung-Jin Kim and Jaejoon Han
We evaluated the antioxidant and antimicrobial activities of various leafy herbal tea (LHT) extracts, including rooibos, green tea, black tea, rosemary, lemongrass, mulberry leaf, bamboo leaf, lotus leaf, peppermint, persimmon leaf, and mate tea. To compare the antioxidant activities of various LHTs, samples of each were extracted with 80 °C water or 20 °C ethanol, and their total phenolic content (TPC), total flavonoid content (TFC), 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2-azinobis-3 ethyl benxothiazoline-6-sulphonic acid (ABTS) radical cation decolorization activity, ferric reducing power, and ferrous ion chelating effect were measured. Green tea ethanol extract showed the highest antioxidant activity in all assays except the ferrous ion-chelating assay. Water extracts of green tea and black tea and ethanol extracts of rosemary, mate, and persimmon leaf teas also exhibited considerable antioxidant potential, followed by the green tea ethanol extract. Minimum inhibitory concentrations (MIC) and minimum lethal concentrations (MLC) were determined to verify the antimicrobial activities of the LHT extracts against two oral pathogens (Streptococcus mutans and Streptococcus sobrinus) and three food-borne pathogens (Listeria monocytogenes, Shigella flexneri, and Salmonella enterica). Among the tested LHTs, green tea ethanol extract had potent antimicrobial activity against all five pathogens, and the mate tea water extract was the most effective against Gram-positive bacteria. Consequently, green tea ethanol extracts had the most powerful antioxidant and antimicrobial properties, suggesting their potential application as a health-promoting functional ingredient or natural preservative in foods.
Author: Cornelia Braicu and Michael R. Ladomery and Veronica S. Chedea and Alexandru Irimie and Ioana Berindan-Neagoe
Catechins and their gallate esters are a class of polyphenolic compounds. The catechin subclass known as flavan-3-ols have recently attracted much attention with regards to their beneficial effect on human health. Their biological actions are dependent on the structure of the compounds and vary according to cell type. They are best known as powerful antioxidants; however depending on the doses they also exhibit prooxidant effects. The anti- or prooxidant effects of green tea catechins have been implicated in the modulation of several cellular functions often associated with strong chemoprotective properties. This review summarises the benefit catechins to human health, the main molecular pathways modulated by catechins. The relationship between the structure and activity of the catechins needs to be studied further. In the future, the structure of catechins could be modified so as to synthesise novel compounds with more specific beneficial properties and higher bioavailability.
Author: Ayelet Zlotogorski and Aliza Dayan and Dan Dayan and Gavriel Chaushu and Tuula Salo and Marilena Vered
Summary Nutraceuticals with anti-neoplastic potential are suitable candidates for extending the range of therapeutic options for several types of cancers. One of these malignancies is oral cancer of the squamous cell carcinoma type, for which current treatment approaches have not succeeded in improving long-term clinical outcome. We recently reviewed the beneficial effects of curcumin for the treatment of oral cancer. In the current review, we focused on the beneficial effects of other two nutraceuticals, green tea extracts [especially (−)-epigallocatechin-3-gallate (EGCG)] and resveratrol, in the treatment of oral cancer. In vivo and in vitro studies as well as clinical trials were reviewed, focusing on the beneficial effect of each of these plant-derived dietary agents, either alone or in combination with various pharmacological agents. We also presented the anti-cancer effects against cancer cells and against components of the tumor microenvironment. It emerged that the poor bioavailability of these nutraceuticals poses an obstacle to their exerting adequate anti-cancer potential. Ground-breaking studies employing new nanotechnology-based therapeutic approaches were presented.