
Research Database
The only comprehensive database for clinical and medical research papers on the healthy benefits of matcha/green tea
Explore Research Topic
Cognitive Function
Matcha consumption leads to much higher intake of green tea phytochemicals compared to regular green tea. Previous research on caffeine, L-theanine, and epigallocatechin gallate (EGCG) repeatedly demonstrated benefits on cognitive performance.
Learn MoreHeart Health
According to Harvard Medical School, “lowering your risk of cardiovascular disease may be as easy as drinking green tea. Studies suggest this light, aromatic tea may lower LDL cholesterol and triglycerides, which may be responsible for the tea's association with reduced risk of death from heart disease and stroke.”
Learn MoreMental Health
Matcha contains an amino acid called L-theanine, which has been shown to reduce physiological and psychological stresses. L-theanine also improves cognition and mood in a synergistic manner with caffeine, and promotes alpha wave production in the brain
Learn MoreCancer Prevention
Matcha/green tea has for many centuries been regarded as an essential part of good health in Japan and China. Many believe it can help reduce the risk of cancer, and a growing body of evidence backs this up.
Learn MoreImmunity
A recent study in the journal Proceedings of the National Academy of Sciences concluded that drinking matcha daily greatly enhanced the overall response of the immune system. The exceedingly high levels of antioxidants in matcha mainly take the form of polyphenols, catechins, and flavonoids, each of which aids the body’s defense in its daily struggles against free radicals that come from the pollution in your air, water and foods.
Learn MoreMost Recent Research Articles
Author: Helgi I. Ingólfsson and Roger E. Koeppe II and Olaf S. Andersen
Green tea's health benefits have been attributed to its major polyphenols, the catechins: (−)-epigallocatechin gallate (EGCG), (−)-epicatechin gallate (ECG), (−)-epigallocatechin (EGC), and epicatechin (EC). Catechins (especially EGCG) modulate a wide range of biologically important molecules, including many membrane proteins. Yet, little is known about their mechanism(s) of action. We tested the catechins’ bilayer-modifying potency using gramicidin A (gA) channels as molecular force probes. All the catechins alter gA channel function and modify bilayer properties, with a 500-fold range in potency (EGCG > ECG ≫ EGC > EC). Additionally, the gallate group causes current block, as evident by brief downward current transitions (flickers).
Author: Yu-Wen Hsu and Chia-Fang Tsai and Wen-Kang Chen and Chun-Fa Huang and Cheng-Chieh Yen
Green tea is believed to be beneficial to health because it possesses antioxidant, antiviral and anticancer properties. The potential toxicity of green tea when administered at high doses via concentrated extracts, however, has not been completely investigated. The objective of the present study was to evaluate the safety of green tea extract in ICR mice using a subacute exposure paradigm. In this study, mice were orally administered (gavage) green tea extract at doses of 0 (as normal group), 625, 1250 and 2500 mg/kg body weight/day for 28 days. The results showed that oral administration of green tea extract did not cause adverse effects on body weight, organ weights, hematology, serum biochemistry, urinalysis or histopathology. Additionally, administering green tea extract via gavage significantly reduced triglyceride and cholesterol levels. These observed effects could be attributed to the high levels of catechins present in green tea as these compounds have been reported to have beneficial health effects. The no-observed-adverse-effect level for green tea extract derived from the results of the present study was 2500 mg/kg body weight/day.
Author: Vera Lavelli and Mark Corey and William Kerr and Claudia Vantaggi
Intermediate moisture products made from blanched apple flesh and green tea extract (about 6 mg of monomeric flavan 3-ols added per g of dry apple) or blanched apple flesh (control) were produced, and their quality attributes were investigated over storage for two months at water activity (aw) levels of 0.55 and 0.75, at 30 °C. Products were evaluated for colour (L∗, a∗, and b∗ Hunter’s parameters), phytochemical contents (flavan 3-ols, chlorogenic acid, dihydrochalcones, ascorbic acid and total polyphenols), ferric reducing antioxidant potential, 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical-scavenging activity and ability to inhibit formation of fructose-induced advanced glycation end-products. During storage of the fortified and unfortified intermediate moisture apples, water availability was sufficient to support various chemical reactions involving phytochemicals, which degraded at different rates: ascorbic acid > flavan 3-ols > dihydrochalcones and chlorogenic acid. Colour variations occurred at slightly slower rates after green tea addition. In the intermediate moisture apple, antioxidant and anti-glycoxidative properties decreased at similar rates (half-life was about 80 d at aw of 0.75, 30 °C). In the green tea-fortified intermediate moisture apple, the antioxidant activity decreased at a slow rate (half-life was 165 d at aw of 0.75, 30 °C) and the anti-glycoxidative properties did not change, indicating that flavan 3-ol degradation involved the formation of derivatives that retained the properties of their parent compounds. Since these properties are linked to oxidative- and advanced glycation end-product-related diseases, these results suggest that green tea fortification of intermediate moisture apple products could be a valuable means of product innovation, to address consumers’ nutritional needs.
Author: Chwan-Li Shen and James K. Yeh and Jay J. Cao and Ming-Chien Chyu and Jia-Sheng Wang
Osteoporosis is a major health problem in the elderly. Epidemiological evidence has shown an association between tea consumption and the prevention of bone loss in the elderly population. Ingestion of green tea and green tea bioactive compounds may be beneficial in mitigating bone loss of this population and decreasing their risk of osteoporotic fractures. This review describes the effect of green tea with its bioactive components on bone health with an emphasis on the following: (i) the etiology of osteoporosis, (ii) evidence of osteo-protective impacts of green tea on bone mass and microarchitecture in various bone loss models in which induced by aging, sex hormone deficiency, and chronic inflammation, (iii) discussion of impacts of green tea on bone mass in two obesity models, (iv) observation of short-term green tea supplementation given to postmenopausal women with low bone mass, (v) possible mechanisms for the osteo-protective effects of green tea bioactive compounds, and (vi) a summary and future research direction of green tea and bone health.
Author: Carol López-de-Dicastillo and Joaquin Gómez-Estaca and Ramón Catalá and Rafael Gavara and Pilar Hernández-Muñoz
Active antioxidant food packaging films were produced by the incorporation of ascorbic acid, ferulic acid, quercetin, and green tea extract into an ethylene vinyl alcohol copolymer (EVOH) matrix. The characterisation of the thermal and barrier properties of the developed film showed that the addition of these bioactive compounds did not greatly modify their properties. However, the presence of ascorbic and ferulic acids resulted in a significant decrease in water vapour permeability, possibly due to the high affinity for water of these substances. Exposure of the films to various food simulants showed that the release from the films was dependent on the type of food simulant and the antioxidant incorporated: in the aqueous food simulant, materials containing ascorbic acid produced the largest release; in the fatty food simulant, quercetin and green tea extract presented the best performance. The efficiency of the films developed was determined by real packaging applications of brined sardines. The evolution of the peroxide index and the malondialdehyde content showed that, in general, the films improved sardine stability. Films with green tea extract offered the best protection against lipid oxidation.
Author: Brett E. Carter and Adam Drewnowski
Previous research has shown that beverages containing soluble fibers can decrease energy intake at the next meal among normal weight participants. Caffeine and green tea catechins have separately been associated with increased satiety. The present study examined the satiating power of a beverage containing soluble fiber as well as a beverage containing the same fiber, caffeine and green tea catechins. These two test beverages were evaluated in comparison to an equal calorie control beverage as well as a no-beverage control condition. All beverage preloads were presented three times for a total of 0.28–0.35 MJ and 0–30 g fiber. Dependent measures were appetite ratings and calorie intake at a test meal. The no-beverage condition was associated with the highest ratings for hunger and the lowest ratings for fullness when compared to the other three beverage conditions. Of the three beverage conditions, the beverage containing the fiber, green tea catechins, and caffeine created the lowest hunger and the highest fullness ratings. That condition was also associated with the lowest energy intake at the next meal. The present findings indicate that the beverage containing caffeine and green tea catechins in combination with soluble fiber decrease appetite and energy intake relative to a beverage with equal caloric content.
Author: A.S.G. Costa and M.A. Nunes and I.M.C. Almeida and M.R. Carvalho and M.F. Barroso and R.C. Alves and M.B.P.P. Oliveira
Nowadays, new emerging products claiming antioxidant properties are becoming more frequent. However, information about this topic in their labels is usually scarce. In this paper, we analyzed total phenolics, total flavonoids and ascorbic acid contents, as well as DPPH scavenging activity of several commercial samples, namely green tea and other herbal infusions, dietary supplements, and fruit juices, available in the Portuguese market. In general, beverages containing green tea and hibiscus showed higher phenolics contents (including flavonoids) and antioxidant activity than those without these ingredients. A borututu infusion presented the lowest concentrations of bioactive compounds and scavenging activity, due to the low recommended amount of plant to prepare the beverage. Some juices without antioxidant claims in the label presented similar values to those with it.
Author: Soon-Mi Shim and Sang-Ho Yoo and Chan-Su Ra and Young-Kyung Kim and Jin-Oh Chung and Sang-Jun Lee
The objective of this study was to determine the effect of sugar substitute and acid on digestive stability and intestinal uptake of catechins in Ready-To-Drink (RTD) green tea. Green tea extracts formulated with prescribed amounts of sucrose (200, 500, and 1000 mg), glucose (280, 700, and 1400 mg), and xylitol (200, 500, and 1000 mg) in combination with citric acid (10 mg) or vitamin C (10 mg) were subjected to an in vitro digestion model coupled with Caco-2 cells. Green tea extracts only showed a poor digestive recovery (5.3%) of total catechins and EGC and EGCG significantly decreased with the digestive recovery of 4.6% and 6.1%, respectively. However, measured amount of EGC, EGCG, or ECG in digestive fluids and caco-2 human intestinal cell significantly increased by adding citric acid or vitamin C. There was remarkable increase of digestive recovery of total catechins in green tea with xylitol/citric acid and xylitol/vitamin C by 1.7–2.5 times and 3 times, respectively, with different amounts of xylitol. It was also determined that intestinal uptake of total catechins significantly increased 6 and 11 times in green tea with xylitol/citric acid and xylitol/vitamin C, respectively, compared to green tea only.
Author: Jaqueline Minatti and Elisabeth Wazlawik and Mariana A. Hort and Fernanda L. Zaleski and Rosa M. Ribeiro-do-Valle and Marcelo Maraschin and Edson L. da Silva
The aim of this study was to evaluate the effects of green tea extract (GTE) administration on vascular reactivity and atherosclerosis progression in low-density lipoprotein receptor knockout mice. We hypothesized that GTE intake may ameliorate atherosclerosis by improving endothelial dysfunction. Animals (n = 12 per group) were fed a hypercholesterolemic diet and received either water or GTE at a dose of 50, 100, or 300 mg/kg once a day by gavage (100 μL/10 g weight). After 4 weeks, atherosclerosis extension and vascular reactivity were evaluated in the aorta, and the levels of lipids, monocyte chemotactic protein-1(MCP-1), and tumor necrosis factor α were measured in the plasma. Administration of GTE at a dose of 50 mg/kg significantly decreased the area of atherosclerotic lesions by 35%, improved the vascular reactivity in the isolated thoracic aorta, and lowered the plasma levels of both MCP-1 and triglycerides. Delivery of 100 mg/kg of GTE only promoted vasocontraction and vasorelaxation (P < .05), whereas a dose of 300 mg/kg was ineffective. Maximum contraction and relaxation negatively correlated with the lesion area (r = −0.755 and −0.767, respectively), whereas the plasma levels of MCP-1 and triglycerides positively correlated with plaque size (r = 0.549 and 0.421, respectively). In summary, our results supported the hypothesis that administration of GTE at low doses may contribute to a decrease in atherosclerosis progression by reversing endothelial dysfunction.
Author: Andrew Scholey and Luke A. Downey and Joseph Ciorciari and Andrew Pipingas and Karen Nolidin and Melissa Finn and Melissa Wines and Sarah Catchlove and Alirra Terrens and Emma Barlow and Leanne Gordon and Con Stough
Green tea is reported to have wide ranging beneficial health outcomes across epidemiological studies, which have been attributed to its flavonoid content. We investigated whether the flavonoid epigallocatechin gallate (EGCG) modulates brain activity and self-reported mood in a double-blind, placebo controlled crossover study. Participants completed baseline assessments of cognitive and cardiovascular functioning, mood and a resting state electroencephalogram (EEG) before and then 120 min following administration of 300 mg EGCG or matched placebo. EGCG administration was associated with a significant overall increase in alpha, beta and theta activity, also reflected in overall EEG activity, more dominant in midline frontal and central regions, specifically in the frontal gyrus and medial frontal gyrus. In comparison to placebo the EGCG treatment also increased self-rated calmness and reduced self rated stress. This pattern of results suggests that participants in the EGCG condition may have been in a more relaxed and attentive state after consuming EGCG. This is in keeping with the widespread consumption of green tea for its purported relaxing/refreshing properties. The modulation of brain function due to EGCG is deserving of further controlled human studies.