Fraud Blocker

cancer-prevention

Matcha/green tea has for many centuries been regarded as an essential part of good health in Japan and China. Many believe it can help reduce the risk of cancer, and a growing body of evidence backs this up.
Matcha/green tea has for many centuries been regarded as an essential part of good health in Japan and China. Many believe it can help reduce the risk of cancer, and a growing body of evidence backs this up.

Recent Research Papers on
cancer-prevention

Metabolic effects of green tea and of phases of weight loss

Author: K. Diepvens and E.M.R. Kovacs and N. Vogels and M.S. Westerterp-Plantenga

The effect of ingestion of green tea (GT) extract along with a low-energy diet (LED) on health-related blood parameters, and the relationships among changes in metabolic parameters and phases of weight loss were assessed. A double-blind, placebo-controlled, parallel design was used. 46 female subjects (BMI 27.7 ± 1.8 kg/m2) were fed in energy balance from days 1 to 3, followed by a LED with GT (n = 23) or placebo (PLAC, n = 23) from days 4 to 87. The LED-period consisted of a phase 1 of 4 weeks (days 4–32) followed by a phase 2 of 8 weeks (days 32–87). Body composition and fasting blood samples were determined on days 4, 32 and 87. No significant differences were observed between the blood parameters of the PLAC and GT group. In phase 1 compared to phase 2 the rate of weight loss was 0.09 ± 0.05 kg/day vs. 0.03 ± 0.03 kg/day (p < 0.001); Fat free mass (FFM) was 21% of weight loss in phase 1 vs. 7% in phase 2 (ns). Surprisingly, favourable changes in free fatty acids, triacylglycerol, β-hydroxybutyrate, glucose and total cholesterol in phase 1 were reversed in phase 2 (p < 0.01). Taken together, GT supplementation during a LED had no effect on health-related blood parameters. Initial improvements in several blood measures at day 32 were reversed by day 87, despite continued weight loss. Modest weight loss improved HDL cholesterol and blood pressure.

 

Get the whole article here

All teas are not created equal: The Chinese green tea and cardiovascular health

Author: Tsung O. Cheng

Tea is one of the most widely consumed beverages in the world, next only to water. It can be categorized into three types, depending on the level of fermentation, i.e., green (unfermented), oolong (partially fermented) and black (fermented) tea. In general, green tea has been found to be superior to black tea in terms of antioxidant activity owing to the higher content of (−)-epigallocatechin gallate. The processes used in the manufacture of black tea are known to decrease levels of the monometric catechins to a much greater extent than the less severe conditions applied to other teas. The cardioprotective effect of flavonoids from green tea can be attributed to not only antioxidant, antithrombogenic and anti-inflammatory properties but also improvement of coronary flow velocity reserve. In this article, I will discuss the effects of green tea on atherosclerosis, coronary heart disease, hypertension, diabetes, metabolic syndrome and obesity, and, finally, its comparison with black tea.

 

 

Get the whole article here

Green Tea Consumption and Mortality Due to Cardiovascular Disease, Cancer, and All Causes in Japan: The Ohsaki Study

Author: Kuriyama S and Shimazu T and Ohmori K and Kikuchi N and Nakaya N and Nishino Y and Tsubono Y and Tsuji I

CONTEXT: Green tea polyphenols have been extensively studied as cardiovascular disease and cancer chemopreventive agents in vitro and in animal studies. However, the effects of green tea consumption in humans remain unclear. OBJECTIVE: To investigate the associations between green tea consumption and all-cause and cause-specific mortality. DESIGN, SETTING, AND PARTICIPANTS: The Ohsaki National Health Insurance Cohort Study, a population-based, prospective cohort study initiated in 1994 among 40,530 Japanese adults aged 40 to 79 years without history of stroke, coronary heart disease, or cancer at baseline. Participants were followed up for up to 11 years (1995-2005) for all-cause mortality and for up to 7 years (1995-2001) for cause-specific mortality. MAIN OUTCOME MEASURES: Mortality due to cardiovascular disease, cancer, and all causes. RESULTS: Over 11 years of follow-up (follow-up rate, 86.1%), 4209 participants died, and over 7 years of follow-up (follow-up rate, 89.6%), 892 participants died of cardiovascular disease and 1134 participants died of cancer. Green tea consumption was inversely associated with mortality due to all causes and due to cardiovascular disease. The inverse association with all-cause mortality was stronger in women (P = .03 for interaction with sex). In men, the multivariate hazard ratios of mortality due to all causes associated with different green tea consumption frequencies were 1.00 (reference) for less than 1 cup/d, 0.93 (95% confidence interval [CI], 0.83-1.05) for 1 to 2 cups/d, 0.95 (95% CI, 0.85-1.06) for 3 to 4 cups/d, and 0.88 (95% CI, 0.79-0.98) for 5 or more cups/d, respectively (P = .03 for trend). The corresponding data for women were 1.00, 0.98 (95% CI, 0.84-1.15), 0.82 (95% CI, 0.70-0.95), and 0.77 (95% CI, 0.67-0.89), respectively (PCONCLUSION: Green tea consumption is associated with reduced mortality due to all causes and due to cardiovascular disease but not with reduced mortality due to cancer.

 

Get the whole article here

Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia

Author: E.W.C. Chan and Y.Y. Lim and Y.L. Chew

Methanol extracts of fresh tea leaves from a lowland plantation in Malaysia were screened for total phenolic content (TPC) and antioxidant activity (AOA). AOA evaluation included 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging ability, ferric-reducing antioxidant power (FRAP), and ferrous-ion chelating (FIC) ability. Ranking, based on TPC and AOA, was as follows: shoots > young leaves > mature leaves. TPC and AOA of lowland leaves were comparable to those of highland plants. A green tea produced by drying young leaves in a household microwave oven for 4 min showed significantly higher TPC and AOA than did four commercial brands of green and black tea.

 

 

Get the whole article here

Reading the Tea Leaves: Anticarcinogenic Properties of (-)-Epigallocatechin-3-Gallate

Author: Jennifer R. Carlson and Brent A. Bauer and Ann Vincent and Paul J. Limburg and Ted Wilson

Green tea is an extremely popular beverage worldwide. Derivatives of green tea, particularly (-)-epigallocatechin-3-gallate (EGCG), have been proposed to have anticarcinogenic properties based on preclinical, observational, and clinical trial data. To summarize, clarify, and extend current knowledge, we conducted a comprehensive search of the PubMed database and other secondary data sources, as appropriate, regarding the chemopreventive potential of EGCG. Apparently, EGCG functions as an antioxidant, preventing oxidative damage in healthy cells, but also as an antiangiogenic agent, preventing tumors from developing a blood supply needed to grow larger. Furthermore, EGCG may stimulate apoptosis in cancerous cells by negatively regulating the cell cycle to prevent continued division. Finally, EGCG exhibits antibacterial activity, which may be implicated in the prevention of gastric cancer. Although in vitro research of the anticarcinogenic properties of EGCG seems promising, many diverse and unknown factors may influence its in vivo activity in animal and human models. Some epidemiological studies suggest that green tea compounds could protect against cancer, but existing data are inconsistent, and limitations in study design hinder full interpretation and generalizability of the published observational findings. Several clinical trials with green tea derivatives are ongoing, and further research should help to clarify the clinical potential of EGCG for chemoprevention and/or chemotherapy applications.

 

 

Get the whole article here

Glucuronide transport across the endoplasmic reticulum membrane is inhibited by epigallocatechin gallate and other green tea polyphenols

Author: Katalin Révész and Anna Tüttő and Éva Margittai and Gábor Bánhegyi and Judit É. Magyar and József Mandl and Miklós Csala

Toxic endogenous or exogenous compounds can be inactivated by various conjugation reactions. Glucuronidation (i.e. conjugation with glucuronate) is especially important due to the large number of drugs and chemical carcinogens that are detoxified through this pathway. Stable and harmless glucuronides can be reactivated by enzymatic hydrolysis thus inhibitors of glucuronidase activity reduce the risk of chemical carcinogenesis. The aim of this study was to reveal whether this mechanism contributes to the anti-cancer effect of green tea flavanols, which has been shown in various animal models. Therefore, we investigated the effect of these polyphenols on deglucuronidation in rat liver microsomes and in Hepa 1c1c7 mouse hepatoma cells, using 4-methylumbelliferyl glucuronide as model substrate. Tea flavanols inhibited β-glucuronidase in intact vesicles, where glucuronide transport across the microsomal membrane is rate-limiting, but were almost ineffective in permeabilized vesicles. Epigallocatechin gallate, the major green tea flavanol was shown to have a concentration-dependent inhibitory effect on both β-glucuronidase activity and glucuronide transport in native vesicles. Epigallocatechin gallate also inhibited β-glucuronidase activity in native Hepa 1c1c7 mouse hepatoma cells, while failed to affect the enzyme in alamethicin-permeabilized cells, where the endoplasmic membrane barrier was eliminated. Our findings indicate that tea flavanols inhibit deglucuronidation in the endoplasmic reticulum at the glucuronide transport stage. This phenomenon might potentially contribute to the cancer-preventing dietary or pharmacological effect attributed to these catechins.

 

 

Get the whole article here

Matrix proteases, green tea, and St. John's wort: Biomedical research catches up with folk medicine

Author: Isabella Dell'Aica and Rosy Caniato and Susan Biggin and Spiridione Garbisa

Background Some proteases involved in extracellular matrix degradation are instrumental not only in overcoming tissue barriers to allow normal extravasation of hematic cells, but also in facilitating pathological processes such as inflammation, angiogenesis and tumor invasion. The possibility of blocking these enzymes has led to the development of synthetic inhibitors, though clinical trials have been disappointing owing to considerable side effects. However, long before enzymes were first isolated, these same pathologies were being treated in plant-based folk remedies, and today science is screening them for their reputed beneficial effects. State of the art We present studies of 2 vegetable components as protease inhibitors. The first, (−)epigallocatechin-3-gallate — from green tea, has proved a good weapon for inhibiting gelatinases MMP-2 and MMP-9, but an even better inhibitor of leukocyte elastase (LE) activity; in vivo it blocks inflammation, angiogenesis and tumor invasion. The second, hyperforin – from Hypericum sp, inhibits LE-triggered activation of MMP-9, PMN chemotaxis and chemoinvasion, PMN-triggered angiogenesis, and inflammation-triggered pulmonary fibrosis; it also represses tumor-cell expression of MMP-2, thereby restraining invasion and metastasis. Conclusion Modern research clearly vindicates epidemiological and historical evidence of the beneficial effects of two long-used allies from the plant kingdom, going a step beyond by shedding light on mechanistic keys.

 

Get the whole article here

Proposed mechanisms of (−)-epigallocatechin-3-gallate for anti-obesity

Author: Hyun-Seuk Moon and Hong-Gu Lee and Yun-Jaie Choi and Tae-Gyu Kim and Chong-Su Cho

Green tea catechins (GTCs) are polyphenolic flavonoids formerly called vitamin P. GTCs, especially (−)-epigallocatechin-3-gallate (EGCG), lower the incidence of cancers, collagen-induced arthritis, oxidative stress-induced neurodegenerative diseases, and streptozotocin-induced diabetes. Also, inhibition of adipogenesis by green tea and green tea extract has been demonstrated in cell lines, animal models, and humans. The obesity-preventive effects of green tea and its main constituent EGCG are widely supported by results from epidemiological, cell culture, animal, and clinical studies in the last decade. Studies with adipocyte cell lines and animal models have demonstrated that EGCG inhibits extracellular signal-related kinases (ERK), activates AMP-activated protein kinase (AMPK), modulates adipocyte marker proteins, and down-regulates lipogenic enzymes as well as other potential targets. Also, the catechin components of green tea have been shown to possess anti-carcinogenic properties possibly related to their anti-oxidant activity. In addition, it was shown that dietary supplementation with EGCG could potentially contribute to nutritional strategies for the prevention and treatment of type 2 diabetes mellitus. In this review, the biological activities and multiple mechanisms of EGCG in cell lines, animal models, and clinical observations are explained.

 

Get the whole article here

Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo

Author: Rajesh L. Thangapazham and Anoop K. Singh and Anuj Sharma and James Warren and Jaya P. Gaddipati and Radha K. Maheshwari

Tea [Camellia sinensis (Theaceae)] intake is second only to water in terms of worldwide popularity as a beverage. The Green tea polyphenols have been shown to have a protective effect in prostate cancer in various pre-clinical animal models and has been reported to be effective in several other cancer types as well. An inverse association between the risk of breast cancer and the intake of green tea has also been reported in Asian Americans. Several epidemiological studies have shown that breast cancer progression is delayed in the Asian population that consumes green tea on regular basis. In this study, we report the effectiveness of green tea polyphenols (GTP) and its constituent Epigallocatechin Gallate (EGCG) in tumor regression using both in-vitro cell culture models and in vivo athymic nude mice models of breast cancer. The anti-proliferative effect of GTP and EGCG on the growth of human breast cancer MDA-MB-231 cell was studied using a tetrazolium dye-based (MTT) assay. Both GTP and EGCG treatment had the ability to arrest the cell cycle at G1 phase as assessed by flow cytometry. The expression of Cyclin D, Cyclin E, CDK 4, CDK 1 and PCNA were down regulated over the time in GTP and EGCG treated experimental group, compared to the untreated control group as evaluated by western blot analysis for cell cycle proteins, which corroborated the G1 block. Nude mice inoculated with human breast cancer MDA-MB-231 cells and treated with GTP and EGCG were effective in delaying the tumor incidence as well as reducing the tumor burden when compared to the water fed and similarly handled control. GTP and EGCG treatment were also found to induce apoptosis and inhibit the proliferation when the tumor tissue sections were examined by immunohistochemistry. Our results suggest that GTP and EGCG treatment inhibits proliferation and induce apoptosis of MDA-MB-231 cells in-vitro and in-vivo. All together, these data sustain our contention that GTP and EGCG have anti-tumor properties.

 

 

Get the whole article here

Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect

Author: Sung I. Koo and Sang K. Noh

Animal and epidemiological studies suggest that green tea catechins may reduce the risk of cardiovascular diseases [e.g., coronary heart disease (CHD)]. The health benefit of green tea has been attributed to its antioxidant and anti-inflammatory properties; however, considerable evidence suggests that green tea and its catechins may reduce the risk of CHD by lowering the plasma levels of cholesterol and triglyceride. Although the mechanism underlying such effect of green tea is yet to be determined, it is evident from in vitro and in vivo studies that green tea or catechins inhibit the intestinal absorption of dietary lipids. Studies in vitro indicate that green tea catechins, particularly (−)-epigallocatechin gallate, interfere with the emulsification, digestion, and micellar solubilization of lipids, critical steps involved in the intestinal absorption of dietary fat, cholesterol, and other lipids. Based on the observations, it is likely that green tea or its catechins lower the absorption and tissue accumulation of other lipophilic organic compounds. The available information strongly suggests that green tea or its catechins may be used as safe and effective lipid-lowering therapeutic agents.

 

Get the whole article here

 

Other Popular Research Topics

Cognitive Function

Cognitive Function

Matcha consumption leads to much higher intake of green tea phytochemicals compared to regular green tea. Previous research on caffeine, L-theanine, and epigallocatechin gallate (EGCG) repeatedly demonstrated benefits on cognitive performance.

Learn More
Heart Health

Heart Health

According to Harvard Medical School, “lowering your risk of cardiovascular disease may be as easy as drinking green tea. Studies suggest this light, aromatic tea may lower LDL cholesterol and triglycerides, which may be responsible for the tea's association with reduced risk of death from heart disease and stroke.”

Learn More
Mental Health

Mental Health

Matcha contains an amino acid called L-theanine, which has been shown to reduce physiological and psychological stresses. L-theanine also improves cognition and mood in a synergistic manner with caffeine, and promotes alpha wave production in the brain

Learn More
Immunity

Immunity

A recent study in the journal Proceedings of the National Academy of Sciences concluded that drinking matcha daily greatly enhanced the overall response of the immune system. The exceedingly high levels of antioxidants in matcha mainly take the form of polyphenols, catechins, and flavonoids, each of which aids the body’s defense in its daily struggles against free radicals that come from the pollution in your air, water and foods.

Learn More
Shipping Icon Free shipping on subscriptions + orders over $49 (US only)

{property.value} {property.value} {property.value} Include jar: {property.value}

Delivery every {property.value}

{property.value}

+
You definitely need tools!
Perfect coldbrew everytime
The ideal way to store your matcha
The ideal way to store your matcha